Genomic Signatures of Distributive Conjugal Transfer among Mycobacteria

نویسندگان

  • Tatum D. Mortimer
  • Caitlin S. Pepperell
چکیده

Distributive conjugal transfer (DCT) is a newly described mechanism of lateral gene transfer (LGT) that results in a mosaic transconjugant structure, similar to the products of meiosis. We have tested popular LGT detection methods on whole-genome sequence data from experimental DCT transconjugants and used the best performing methods to compare genomic signatures of DCT with those of LGT through natural transformation, conjugative plasmids, and mobile genetic elements (MGE). We found that DCT results in transfer of larger chromosomal segments, that these segments are distributed more broadly around the chromosome, and that a greater proportion of the chromosome is affected by DCT than by other mechanisms of LGT. We used the best performing methods to characterize LGT in Mycobacterium canettii, the mycobacterial species most closely related to Mycobacterium tuberculosis. Patterns of LGT among M. canettii were highly distinctive. Gene flow appeared unidirectional, from lineages with minimal evidence of LGT to isolates with a substantial proportion (6-13%) of sites identified as recombinant. Among M. canettii isolates with evidence of LGT, recombinant fragments were larger and more evenly distributed relative to bacteria that undergo LGT through natural transformation, conjugative plasmids, and MGE. Spatial bias in M. canettii was also unusual in that patterns of recombinant fragment sharing mirrored overall phylogenetic structure. Based on the proportion of recombinant sites, the size of recombinant fragments, their spatial distribution and lack of association with MGE, as well as unidirectionality of DNA transfer, we conclude that DCT is the predominant mechanism of LGT among M. canettii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title : Genomic Signatures of Distributive Conjugal Transfer among Mycobacteria

© The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. ...

متن کامل

Distributive Conjugal Transfer in Mycobacteria Generates Progeny with Meiotic-Like Genome-Wide Mosaicism, Allowing Mapping of a Mating Identity Locus

Horizontal gene transfer (HGT) in bacteria generates variation and drives evolution, and conjugation is considered a major contributor as it can mediate transfer of large segments of DNA between strains and species. We previously described a novel form of chromosomal conjugation in mycobacteria that does not conform to classic oriT-based conjugation models, and whose potential evolutionary sign...

متن کامل

LpqM, a mycobacterial lipoprotein-metalloproteinase, is required for conjugal DNA transfer in Mycobacterium smegmatis.

We have previously described a novel conjugal DNA transfer process that occurs in Mycobacterium smegmatis. To identify donor genes required for transfer, we have performed a transposon mutagenesis screen; we report here that LpqM, a putative lipoprotein-metalloproteinase, is essential for efficient DNA transfer. Bioinformatic analyses predict that LpqM contains a signal peptide necessary for th...

متن کامل

Bacterial conjugation: a potential tool for genomic engineering.

Bacterial conjugation is a mechanism for horizontal DNA transfer with potential for universal DNA delivery. The conjugal machinery can be separated into three functional modules: the relaxosome, the coupling protein, and a type IV protein secretion system. Module interchangeability among different conjugative systems opens up the possibility of "a la carte" engineering of DNA delivery into virt...

متن کامل

Conjugal transfer of plasmid DNA between streptococci immobilized in calcium alginate gel beads.

A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014